Skip to main content
Warning: You are using the test version of PyPI. This is a pre-production deployment of Warehouse. Changes made here affect the production instance of TestPyPI (testpypi.python.org).
Help us improve Python packaging - Donate today!

Multi-dimensional parameterized tests for Pytest and Nose

Project Description

There are multiple ways to write parameterized tests in Python. Unittest has some support these days, Nose allows yielding test cases, Pytest has built-in parameterization support, and the excellent nose_parameterized package enhances these capabilities in most test frameworks.

testdimensions provides a convenient way to write multi-dimensional test matrices in some simple scenarios. If your function accepts multiple arguments and you want to test a cross product set of parameter combinations, testdimensions is for you.

Specify your tests as a table whose:

  • Y axis labels are values for the third-last parameter
  • X axis labels are values for the second-last paremeter
  • cell values are the expected values (last parameter)
  • columns are separated by two spaces (make sure this is true on all rows)
# test_math.py
@pytest_mark_dimensions('base,exponent,expected', '''
    # y: base
    # x: exponent
    # cell: expected

          2    3    9
     0    0    0    0
     1    1    1    1
     2    4    8  512
''')
def test_pow(base, exponent, expected):
    assert math.pow(base, exponent) == expected


@pytest_mark_dimensions('input,function,expected', '''
                round  math.floor  math.ceil
    -1.5         -2.0        -2.0       -1.0
     1.0          1.0         1.0        1.0
     1.6          2.0         1.0        2.0
''')
def test_round_floor_ceil(input, function, expected):
    assert function(input) == expected

Output:

$ pytest -v
=========================== test session starts ===============================
platform linux -- Python 3.5.2, pytest-3.0.3, py-1.4.31, pluggy-0.4.0
collected 18 items

test_math.py::test_pow[0-2-0] PASSED
test_math.py::test_pow[0-3-0] PASSED
test_math.py::test_pow[0-9-0] PASSED
test_math.py::test_pow[1-2-1] PASSED
test_math.py::test_pow[1-3-1] PASSED
test_math.py::test_pow[1-9-1] PASSED
test_math.py::test_pow[2-2-4] PASSED
test_math.py::test_pow[2-3-8] PASSED
test_math.py::test_pow[2-9-512] PASSED
test_math.py::test_round_floor_ceil[-1.5-function0--2.0] PASSED
test_math.py::test_round_floor_ceil[-1.5-function1--2.0] PASSED
test_math.py::test_round_floor_ceil[-1.5-function2--1.0] PASSED
test_math.py::test_round_floor_ceil[1.0-function3-1.0] PASSED
test_math.py::test_round_floor_ceil[1.0-function4-1.0] PASSED
test_math.py::test_round_floor_ceil[1.0-function5-1.0] PASSED
test_math.py::test_round_floor_ceil[1.6-function6-2.0] PASSED
test_math.py::test_round_floor_ceil[1.6-function7-1.0] PASSED
test_math.py::test_round_floor_ceil[1.6-function8-2.0] PASSED

============================ 18 passed in 0.03 seconds ========================

Installation

$ pip install testdimensions

Compatibility

  Py2.6 Py2.7 Py3.3 Py3.4 Py3.5 PyPy
nose no yes no no yes no
nose2 no no no no no no
py.test not tested yes not tested not tested yes not tested
unittest no no no no no no
unittest2 no no no no no no

Dependencies

Exhaustive Usage Examples

The @pytest_mark_dimensions decorator is an extension of @pytest.mark.parametrize and requires a comma-separated list of test parameters as its first argument. The second argument is a multi-line string which defines the actual tests. You can also inject values into the test globals namespace using keyword arguments.

To create higher than two-dimensional tests, just define multiple tables interspersed with values for the additional parameters.

@pytest_mark_dimensions('a,b,expected', '''
            -10   0   9  million
    -9      -19  -9   0   999991
     0      -10   0   9  million
    10        0  10  19  1000010
    ''',
    million=1000000)
def test_add(a, b, expected):
    assert a + b == expected


@pytest_mark_dimensions('operation,a,b,expected', '''
    operation = operator.sub

            -10   0    9   million
    -9        1  -9  -18  -1000009
     0       10   0   -9  -million
    10       20  10    1   -999990

    operation = operator.add

            -10   0   9  million
    -9      -19  -9   0   999991
     0      -10   0   9  million
    10        0  10  19  1000010

    operation = operator.mul

            -10   0    9   million
    -9       90   0  -81  -9000000
     0        0   0    0         0
    10     -100   0   90  10000000

    ''',
    million=1000000)
def test_arithmetic_operations(operation, a, b, expected):
    assert operation(a, b) == expected

For Nose support, you need to install nose_parameterized and use the @nosedimensions decorator:

@nosedimensions('a,b,expected', '''
            -10   0   9  million
    -9      -19  -9   0   999991
     0      -10   0   9  million
    10        0  10  19  1000010
    ''',
    million=1000000)
def test_add(a, b, expected):
    assert a + b == expected


@nosedimensions('operation,a,b,expected', '''
    operation = operator.sub

            -10   0    9   million
    -9        1  -9  -18  -1000009
     0       10   0   -9  -million
    10       20  10    1   -999990

    operation = operator.add

            -10   0   9  million
    -9      -19  -9   0   999991
     0      -10   0   9  million
    10        0  10  19  1000010

    operation = operator.mul

            -10   0    9   million
    -9       90   0  -81  -9000000
     0        0   0    0         0
    10     -100   0   90  10000000

    ''',
    million=1000000)
def test_arithmetic_operations(operation, a, b, expected):
    assert operation(a, b) == expected

Note that you still need to enumerate the test parameters just like with Pytest.

Release History

Release History

This version
History Node

0.0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
testdimensions-0.0.1.tar.gz (4.6 kB) Copy SHA256 Checksum SHA256 Source Nov 16, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting