Skip to main content
Warning: You are using the test version of PyPI. This is a pre-production deployment of Warehouse. Changes made here affect the production instance of TestPyPI (
Help us improve Python packaging - Donate today!

PRIMME wrapper for Python

Project Description

Primme is a Python interface to PRIMME, a C library for computing a few eigenvalues and their corresponding eigenvectors of a real symmetric or complex Hermitian matrix. It can also compute singular values and vectors of a square or rectangular matrix. It can find largest, smallest, or interior singular/eigenvalues and can use preconditioning to accelerate convergence. It is especially optimized for large, difficult problems, and can be a useful tool for both non-experts and experts.


You can install the latest version with pip:

pip install numpy   # if numpy is not installed already
pip install primme

Optionally for building the development version do:

git clone
cd primme
make python_install


In the following examples it is computed few eigenvalues and eigenvectors from a real symmetric matrix:

>>> import Primme, scipy.sparse
>>> A = scipy.sparse.spdiags(range(100), [0], 100, 100) # sparse diag. matrix
>>> evals, evecs = Primme.eigsh(A, 3, tol=1e-6, which='LA')
>>> evals # the three largest eigenvalues of A
array([ 99.,  98.,  97.])
>>> new_evals, new_evecs = Primme.eigsh(A, 3, tol=1e-6, which='LA', ortho=evecs)
>>> new_evals # the next three largest eigenvalues
array([ 96.,  95.,  94.])

In the following examples it is computed few singular values and vectors:

>>> import Primme, scipy.sparse
>>> A = scipy.sparse.spdiags(range(1, 11), [0], 100, 10) # sparse diag. rect. matrix
>>> svecs_left, svals, svecs_right = Primme.svds(A, 3, tol=1e-6, which='SM')
>>> svals # the three smallest singular values of A
array([ 1.,  2.,  3.])

>>> A = scipy.sparse.rand(10000, 100, random_state=10)
>>> prec = scipy.sparse.spdiags(np.reciprocal(A.multiply(A).sum(axis=0)),
...           [0], 100, 100) # square diag. preconditioner
>>> svecs_left, svals, svecs_right = Primme.svds(A, 3, which=6.0, tol=1e-6,
...           precAHA=prec)
>>> ["%.5f" % x for x in svals.flat] # the three closest singular values of A to 0.5
['5.99871', '5.99057', '6.01065']

Check further examples and the documentation of eigsh and svds.

Citing this code

Please cite (bibtex):

  • A. Stathopoulos and J. R. McCombs PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM Transaction on Mathematical Software Vol. 37, No. 2, (2010), 21:1-21:30.
  • L. Wu, E. Romero and A. Stathopoulos, PRIMME_SVDS: A High-Performance Preconditioned SVD Solver for Accurate Large-Scale Computations, arXiv:1607.01404

License Information

PRIMME and this interface is licensed under the 3-clause license BSD.

Contact Information

For reporting bugs or questions about functionality contact Andreas Stathopoulos by email, andreas at See further information in the webpage

Release History

This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, Size & Hash SHA256 Hash Help File Type Python Version Upload Date
(245.5 kB) Copy SHA256 Hash SHA256
Source None Apr 11, 2017

Supported By

Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Google Google Cloud Servers DreamHost DreamHost Log Hosting