Skip to main content
Warning: You are using the test version of PyPI. This is a pre-production deployment of Warehouse. Changes made here affect the production instance of TestPyPI (testpypi.python.org).
Help us improve Python packaging - Donate today!

A tool for reading, writing and generally working with 9ML objects and files.

Project Description

NineML (9ML) is a language for describing the dynamics and connectivity of neuronal network simulations (http://nineml.net), which is defined by the NineML specification.

The NineML Python Library is a software package written in Python, which maps the NineML object model onto Python classes for convenient creation, manipulation and validation of NineML models, as well as handling their serialisation to and from XML, JSON, YAML, and HDF5.

Relation to the NineML Specification

The layout of the Python modules and classes in the NineML Python Library relates closely to the structure of the NineML specification (v1.0). However, there are notable exceptions where the NineML Python Library uses names and relationships that are planned to be changed in v2.0 of the specification (the NineML Python Library will be backwards compatible), such as the renaming of ComponentClass elements to separate Dynamics, ConnectionRule and RandomDistribution elements (see https://github.com/INCF/nineml/issues/94). A full list of changes planned for NineML v2.0 can be found at https://github.com/INCF/nineml/milestone/3. When serializing 9ML models the version 1.0 syntax is used unless the version=2 keyword argument is provided.

In addition to classes that directly correspond to the 9ML object model, a range of shorthand notations (“syntactic sugar”) exist to make writing 9ML models by hand more convenient (see the nineml.sugar module). These notations are frequently demonstrated in the examples directory of the repository.

The NineML Catalog

The NineML Catalog contains a collection of validated NineML models, which can be loaded and maninpulated with the NineML Python Library. If you create a model that you believe will be of wider use to the computational neuroscience community please consider contributing to the catalog via a pull request.

Installation

HDF5 (dev)

To add support to read or write HDF5 serialisations you must first install a HDF5 dev library (i.e. with the C headers).

On macOS HDF5 can be installed using Homebrew:

$ brew install hdf5

On Ubuntu/Debian HDF5 can be installed by one of the following packages:

  • libhdf5-serial-dev (serial)
  • libhdf5-openmpi-dev (parallel with Open MPI)
  • libhdf5-mpich-dev (parallel with MPICH)

Pip

The NineML Python Library can be installed using pip:

$ pip install nineml
copyright:Copyright 20011-2017 by the NineML Python Library team, see AUTHORS.
license:BSD 3, see LICENSE for details.

Release History

This version
History Node

1.0

History Node

1.0rc3

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Hash SHA256 Hash Help Version File Type Upload Date
nineml-1.0-py2.py3-none-any.whl
(184.7 kB) Copy SHA256 Hash SHA256
py2.py3 Wheel Nov 23, 2017
nineml-1.0.tar.gz
(3.8 MB) Copy SHA256 Hash SHA256
Source Nov 23, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting