Skip to main content
Warning: You are using the test version of PyPI. This is a pre-production deployment of Warehouse. Changes made here affect the production instance of TestPyPI (testpypi.python.org).
Help us improve Python packaging - Donate today!

A data miner for Measure Data File Format (.mdf)

Project Description
mdfminer
=======================

The project's goal is to parse a "measurement data format" files (.mdf,.dat) and provide the contents in a useful manner.

Mdf is widely used in the automotive industry and ASAM related environments.
The format specification for Version 3.3 is available for download at
<https://vector.com/downloads/mdf_specification.pdf>.
Currently (Dec 2016) Format Version 4.X is the latest but the format specification is not available to the public.

The mdf file format consists of a tree like structure to describe the contents referring
to the file offset of the next block.

Tree Structure of MDF File
==========================

ID Block
HD Block
TX Block(File comment)(optional)
PR Block(Program Specific Data)(optional)
DG Block(Data Group)
Data Record(binary)
Trigger Block(TimingInformation)(optional)
CG Block(s)(Channel Group(s))(optional)
CN Block(s)(Channel(s))(optional)
TX Block(Channel Comment)(optional)
TX Block(Unique Identifier)
CC Block(Channel Conversion Rule)(optional)
CD Block(Dependencies)(optional)
CE Block(Extentions)(optional)

How MDF works
=============

The measurement data is in the Data Record of the DG Block presenting an array of records.
The record prototype is defined by the Channel Group of the DG Block. The Channel Group consists of channels (single measurements)
and basically cuts the record into chuncks defined by bit offset and bit length.
The channels itself have a Conversion Rule on how to compute a real value out of the raw data and also provide information what physical value results.


How mdfminer works
==================

When loading a mdf file, the tree is read but the binary data is not touched yet.
Parsing the tree is usually very fast since it only depends on the number of channels regardless on how long the measurement really is.

Getting measurements from the mdf object with "get_records_with_timestamp()" is done by a generator function, so the memory footprint and execution time is low until the next set of values is yield.
A set of values is presented as a common python dictionary.
Release History

Release History

History Node

1.0.1a0

This version
History Node

1.0.0

History Node

0.0.2b0

History Node

0.0.1b0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
mdfminer-1.0.0.tar.gz (13.7 kB) Copy SHA256 Checksum SHA256 Source Jan 26, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting