Skip to main content
Warning: You are using the test version of PyPI. This is a pre-production deployment of Warehouse. Changes made here affect the production instance of TestPyPI (testpypi.python.org).
Help us improve Python packaging - Donate today!

Allows you to run a test with multiple data sets

Project Description

Genty, pronounced “gen-tee”, stands for “generate tests”. It promotes generative testing, where a single test can execute over a variety of input. Genty makes this a breeze.

For example, consider a file sample.py containing both the code under test and the tests:

from box.test.genty import genty, genty_repeat, genty_dataset
from unittest import TestCase

# Here's the class under test
class MyClass(object):
    def add_one(self, x):
        return x + 1

# Here's the test code
@genty
class MyClassTests(TestCase):
    @genty_dataset(
        (0, 1),
        (100000, 100001),
    )
    def test_add_one(self, value, expected_result):
        actual_result = MyClass().add_one(value)
        self.assertEqual(expected_result, actual_result)

Running the MyClassTests using the default unittest runner

$ python -m unittest -v sample
test_add_one(0, 1) (sample.MyClassTests) ... ok
test_add_one(100000, 100001) (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.000s

OK

Instead of having to write multiple independent tests for various test cases, code can be refactored and parametrized using genty!

It produces readable tests. It produces maintainable tests. It produces expressive tests.

Another option is running the same test multiple times. This is useful in stress tests or when excerising code looking for race conditions. This particular test

@genty_repeat(3)
def test_adding_one_to_zero(self):
    self.assertEqual(1, MyClass().add_one(0))

would be run 3 times, producing output like

$ python -m unittest -v sample
test_adding_one() iteration_1 (sample.MyClassTests) ... ok
test_adding_one() iteration_2 (sample.MyClassTests) ... ok
test_adding_one() iteration_3 (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK

The 2 techniques can be combined:

@genty_repeat(2)
@genty_dataset(
    (0, 1),
    (100000, 100001),
)
def test_add_one(self, value, expected_result):
    actual_result = MyClass().add_one(value)
    self.assertEqual(expected_result, actual_result)

There are more options to explore including naming your datasets and genty_args.

@genty_dataset(
    default_case=(0, 1),
    limit_case=(999, 1000),
    error_case=genty_args(-1, -1, is_something=False),
)
def test_complex(self, value1, value2, optional_value=None, is_something=True):
    ...

would run 3 tests, producing output like

$ python -m unittest -v sample
test_complex(default_case) (sample.MyClassTests) ... ok
test_complex(limit_case) (sample.MyClassTests) ... ok
test_complex(error_case) (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.003s

OK

genty_args allow you to define the params to the test method as if it were being called directly. Thus for complex tests with lots of parameters, one can take advantage of default values and named parameters.

Enjoy!

Installation

To install, simply:

pip install genty

Contributing

See CONTRIBUTING.

Setup

Create a virtual environment and install packages -

mkvirtualenv genty
pip install -r requirements-dev.txt

Testing

Run all tests using -

tox

The tox tests include code style checks via pep8 and pylint.

Release History

Release History

This version
History Node

0.2.0

History Node

0.1.5

History Node

0.1.1

History Node

0.1.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
genty-0.2.0.tar.gz (15.0 kB) Copy SHA256 Checksum SHA256 Source Apr 5, 2014
genty-0.2.0.zip (30.0 kB) Copy SHA256 Checksum SHA256 Source Apr 5, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting